Asymmetric cyclization of 2-alkenylphenols. A comparative study on the use of palladium(II) and titanium(IV) complexes

Takahiro Hosokawa *, Takanori Kono, Toru Shinohara, and Shun-Ichi Murahashi *
Department of Chemistry, Faculty of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560 (Japan)

(Received October 17th, 1988)

Abstract

The oxidative cyclization of 2-(3-pentenyl)phenol catalyzed by [(η^{3} pinene) PdOAc$]_{2}$ gives optically active (+)-2-vinylchroman (25% e.e.), while (-)-2-(1-hydroxyethyl)chroman (56% e.e.) is formed as a single diastereomer upon treatment with $\mathrm{t}-\mathrm{BuOOH}$ in the presence of $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ and $\mathrm{L}-(+)$-diethyl tartrate. 2-(2-Butenyl)phenol also undergoes the Ti-promoted asymmetric cyclization to give ($2 S, 1^{\prime} R$)-(-)-2-(1-hydroxyethyl)-2,3-dihydrobenzofuran (29% e.e.).

The palladium(II)-catalyzed asymmetric cyclization of 2-(2-butenyl)phenols has been shown to be potentially useful for the synthesis of optically active 2,3-dihydrobenzofurans [1]. Furthermore, the information on the asymmetric induction serves as a useful probe in elucidating the nature of $\mathrm{Pd}^{\mathrm{II}}$ species in the oxidations of alkenes [2,3]. Our interest in this type of reactions led us to studies on the usefulness of d^{0} early transition metals such as Ti and Mo in the asymmetric cyclizations of 2-alkenylphenols. Described herein is a comparative study on the use of $\mathbf{P d}^{\mathrm{II}}$ and $\mathrm{Ti}^{\mathrm{IV}}$ complexes as mediators in the reaction.

The cyclization of 2-(3-pentenyl)phenol (1a; $\mathrm{R}=\mathrm{H}$) by $\left[\left(\eta^{3}\right.\right.$-pinene) PdOAc_{2} (2) in the presence of $\mathrm{Cu}(\mathrm{OAc})_{2}$ and $\mathrm{O}_{2}(1 \mathrm{~atm})$ in MeOH gave optically active 2 -vinylchroman (3a) in 25% e.e. as a single product (Table 1, entry 1). Introduction of methyl group on the pentenyl $\mathrm{C}(3)$ carbon lowered the rate of cyclization as well as the enantioselectivity (3% e.e., entry 2). The O_{2} uptake for the oxidation of $\mathbf{1 a}$ $(R=H)$ was faster by a factor of 3 than that of $1 b(R=M e)$.

When the phenols 1 were treated with t-butylhydroperoxide (TBHP) in the presence of $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{4}$ and (+)-diethyltartrate (DET) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, optically active 2-(1-hydroxyethyl)chroman (4) was obtained as a single diastereomer (Table 1). In this case, the presence of an alkyl substituent on the olefin increases the rate of reaction (entries 3 and 4), and 56% enantioselectivity was attained with $\mathbf{1 b}(\mathrm{R}=\mathrm{Me}$). Although the carbon-carbon double bond of 1 b is separated from the OH by four carbons, the realization of such a high \% e.e. is remarkable [4].

The asymmetric cyclization of 2-(2-butenyl)phenol (5) by [(η^{3}-pinene) PdOAc$]_{2}$ (2) catalyst with TBHP in MeOH gives (S)-(+)-2-vinyl-2,3-dihydrobenzofuran (6) in 17% e.e. along with $7(6 / 7=83 / 17)$ [3]. When TBHP was replaced by $\mathrm{Cu}(\mathrm{OAc})_{2}$ and O_{2} as the oxidant, the same result was obtained with respect to the product composition and enantioselectivity, suggesting that the function of $t-\mathrm{BuOOH}$ is virtually the same as that of $\mathrm{Cu}(\mathrm{OAc})_{2}$ and O_{2}.

The $\mathrm{Ti}^{\mathrm{IV}}$-mediated asymmetric cyclization of $\mathbf{5}$ under the aforementioned conditions gave a 22% yield of (-)-2-(1-hydroxyethyl)-2,3-dihydrobenzofuran (8) in 29% e.e. (Table 1, entry 5). However, no reaction took place with 2-(2-propenyl)phenol. This again indicates that the presence of an alkyl substituent on the olefin facilitates the reaction.

The absolute configuration of the newly created chiral $C(2)$ carbon in $\mathbf{8}$ is assigned as (S), since the oxidation with MnO_{2} gave (S)-(-)-2-acetyl-2,3-dihydro-

Table 1
Asymmetric cyclization of 1 and 5 using $\mathrm{Pd}^{\mathrm{II} a}$ or $\mathrm{Ti}^{\mathrm{IV} b}$ complexes

Entry	Substrate	Metal	Product	Yield (\%)	$\begin{aligned} & {[\alpha]_{\mathrm{D}}} \\ & \operatorname{deg}\left(c, \mathrm{CCl}_{4}\right) \end{aligned}$	\% e.e.
1	1a	Pd	3a	64^{d}	+16.0 (0.36)	25^{*}
2	1b	Pd	3b	78	-4.30 (0.48)	3^{f}
3	1a	Ti	4a	<10	-	- ${ }^{8}$
4	1b	Ti	4 b	49	3.71 (0.73) ${ }^{\text {a }}$	56^{1}
5	5	Ti	8	22	-7.42 (1.12)	$29^{\text {i }}$

${ }^{\wedge}$ The reaction was performed by using phenol $1(1 \mathrm{mmol})$, complex $2(0.1 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.1$ mmol) in $\mathrm{MeOH}(1 \mathrm{ml})$ at $35^{\circ} \mathrm{C}$ under $\mathrm{O}_{2}(1 \mathrm{~atm})$ for $7-9 \mathrm{~h} .{ }^{b}$ The reaction was performed by using phenol $1(3.0 \mathrm{mmol})$, $\mathrm{L}-(+)$-DET (3.5 mmol), $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(3.0 \mathrm{mmol})$, and TBHP (6.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ for 48 h [4]. ${ }^{c}$ Isolated yield by preparative $\mathrm{TLC}\left(\mathrm{SiO}_{2}\right) .{ }^{d} \mathrm{~A}$ lower yield of 3 a , compared to that of 3b, may be due to losses during the isolation. ${ }^{e}$ The $\%$ e.e. was determined by ${ }^{1} \mathrm{H} N \mathrm{NR}$ with Eu(tfc) ${ }_{3}$ ($\mathrm{tfc}=$ tris[3-(trifluoromethylhydroxymethylene)- d-camphorate]) through 2-methoxycarbonylchroman derived from 3a by its MnO_{4} oxidation followed by esterification with $\mathrm{CH}_{2} \mathrm{~N}_{2}$. ${ }^{f}$ The \% e,e. was determined by ${ }^{1} \mathrm{H}$ NMR through MTPA ester of 2-hydroxymethyl-2-methylchroman derived from $\mathbf{3 b}$ by ozonolysis followed by NaBH_{4} reduction. ${ }^{g}$ Not determined. ${ }^{h}$ Measured in CHCl_{3}. ${ }^{i}$ The $\%$ e.e. was determined by ${ }^{1} \mathrm{H}$ NMR upon addition of $\mathrm{Eu}(\mathrm{tfc})_{3}$.

benzofuran (9) of known configuration [3]. The reduction of 9 with NaBH_{4} gave the

two diastereomers of 8 which have $J\left(\mathrm{H}(2)-\mathrm{H}\left(1^{\prime}\right)\right)$ values of 3.4 and 6.6 Hz in ${ }^{1} \mathrm{H}$ NMR, corresponding to the erythro and threo isomers, respectively [5]. Comparison of the J value allows us to assign (-)-8 ($3.4 \mathrm{Hz)} \mathrm{to} \mathrm{the} \mathrm{erythro} \mathrm{isomer} \mathrm{of} \mathrm{(} 2 S, 1^{\prime} R$) configuration. The product (-)-4a having $J 3.7 \mathrm{~Hz}$ must have the same configuration. The cyclization seems to involve the epoxidation of olefin and subsequent ring opening with the phenoxy group in an $S_{N} 2$ and the configuration of the product agrees with the process.

Oxidative cyclization of 2-alkenylphenols with TBHP is induced by titanium(IV) as well as palladium(II). Obviously, the Ti-promoted reaction involves a metal alkylperoxide species (TiOOBu), and the oxygen bonded to the metal is electrophilically transferred to the olefin to give the epoxide [6]. The alkyl substituent on the olefin thus increases the rate of reaction. On the other hand, no palladium alkylperoxide (PdOOBu^{l}) [7] seems to participate in the oxidative cyclization. The reaction proceeds by coordination of the olefin to $\mathrm{Pd}^{\text {II }}$ followed by intramolecular

oxypalladation to give the intermediate 10 . The steric effect of alkyl group on the olefin hinders the coordination to $\mathrm{Pd}^{\text {II }}$, and the reactivity and enantioselectivity become less. The PdHX species formed by β-elimination from 10 is oxidized by TBHP, generating a catalytically active species, such as $\mathrm{Pd}(\mathrm{OH}) \mathrm{X}$ [3]. The behaviour of TBHP is completely different from that in the Ti system.

References

1 T. Hosokawa, Y. Imada, and S.-I. Murahashi, Bull. Chem. Soc. Jpn., 58 (1985) 3282.
2 T. Hosokawa, T. Uno, S. Inui, and S.-I. Murahashi, J. Am. Chem. Soc., 103 (1981) 2318.
3 T. Hosokawa, C. Okuda, and S.-I. Murahashi, J. Org. Chem., 50 (1985) 1282.
4 B.E. Rossiter and K.B. Sharpless, J. Org. Chem., 49 (1984) 3707; B.E. Rossiter, in J.D. Morrison (Ed.), Asymmetric Synthesis, Vol. 5, Academic Press, New York, 1985, p. 194.
5 G. Fráter, U. Müller, and G. Günther, Tetrahedron, 40 (1984) 1269; L.M. Jackman and S. Sternhell, Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, Pergamon Press, London, 1969, p. 291-292.
6 M.G. Finn and K.B. Sharpless, in J.D. Morrison (Ed.), Asymmetric Synthesis, Vol. 5, Academic Press, New York, 1985, p. 247.
7 H. Mimoun, Angew. Chem. Int. Ed. Engl., 21 (1982) 734.

